a2 United States Patent
Margalit et al.

US009411847B2

US 9,411,847 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) TRACKING CHANGES THAT AFFECT
PERFORMANCE OF DEPLOYED
APPLICATIONS

(71)
(72)

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Adar Margalit, Modiin (IL); Eran

Dvir, Tel Aviv (IL)
(73)

")

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/612,986

Filed: Feb. 3,2015

(65) Prior Publication Data

US 2015/0149424 A1l May 28, 2015

Related U.S. Application Data

Continuation of application No. 13/491,305, filed on
Jun. 7, 2012, now Pat. No. 8,954,387.

(63)

Int. Cl1.

GO6F 17/00
GO6F 17/30
GO6F 11/34
GO6F 11/30
U.S. CL

CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
...... GOGF 17/30371 (2013.01); GOGF 11/3051

(2013.01); GOGF 11/3476 (2013.01); GO6F
17/30368 (2013.01); GO6F 11/3003 (2013.01);
GOGF 2201/835 (2013.01); GOG6F 2201/86
(2013.01); GO6F 2201/865 (2013.01)

(58) Field of Classification Search
CPC GOG6F 17/50; GOGF 9/4443; GOGF 17/248;
GOG6F 3/0481; GOGF 3/0482; GOGF 3/04842
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,774,657 Bl 82010 Hardman
2002/0161860 Al 10/2002 Godlin et al.
2006/0136510 Al* 6/2006 Voronov ... GO6F 17/24
2008/0294777 Al 11/2008 Karve et al.
2010/0218031 Al 82010 Agarwal et al.
2013/0232124 Al 9/2013 Gaither
OTHER PUBLICATIONS

Yi-min Wang, Microsoft Corporation, “What has changed on my
Machine Lately”, Jan. 5, 2004.
Office Action dated Dec. 18, 2015 for U.S. Appl. No. 13/491,329.

* cited by examiner

Primary Examiner — Truong Vo

(57) ABSTRACT

An application monitoring infrastructure that enables appli-
cation configuration changes on multiple machines across
multiple OS types to be tracked by identifying data containers
that are to be monitored for changes, detecting a change to a
monitored data container, and storing data representative of a
changed version of the monitored data container responsive
to detecting that the monitored container was changed. The
data containers that are to be monitored for changes are iden-
tified from templates, and a unique template is provisioned
for each of the applications.

20 Claims, 6 Drawing Sheets

Health
Monitoring
Server

10

Display
K

Heaith
Maonitor

Cerirat

honitored
Machine

Event

Siarg:
e

1:0

e

Change

U.S. Patent Aug. 9,2016 Sheet 1 of 6 US 9,411,847 B2

Heaith
Monitoring
Server
10
Disol Health
1spiay Monitor
13 11
¥
{
]
Monitored
Central Machina
Monitoring Server 100
20 ,
AP | Applications
23 | 110
£
A4 Parformance
Central Monitoring
Monitor < Agent
21 80
Change
Monitoring
Agent
&0

FIGURE1

U.S. Patent Aug. 9,2016 Sheet 2 of 6 US 9,411,847 B2

Applications 110 j
Performance Change Monitoring Agent
Monitoring 80
Agent
50
Change Change
Tracker i Repository
81 80
F\
Application Monitoring
Monitor B Event Processor 62 B Templates
f}l ¥-3 F-N A Z-Q-
Fa 8} 2) Regisiry
Monitor Monitor Monitor
83 84 85
dMonitored Machine 100

FIGURE 2

U.S. Patent Aug. 9, 2016

FS monitor detects one or more
change events on same file/dir
during a time period < Tmin

_~"Should fite/dir™
~be monilored? 7

Yes |

314\ Determine App 1D of
N application for which the
filte/dir is being monitored
318

" Transform ™
. event{s}?

Yes

Transform into a normalized
event regardless of OS type

322
N\

e

Sheet 3 of 6 US 9,411,847 B2
I 310
L/
318
/

;
I

issue change event to
i change tracker, including
App 1D and file path

Determine OS type

“Transform >
.. event{s)?

Yes

Transform info a normalized
svent based on OS type

¥

issue change eventio

FIGURE 3

change fracker, including i«

App 1D and file path(s)

- . 332
7 More N

" change events fo >
. process?

U.S. Patent

Aug. 9, 2016 Sheet 4 of 6 US 9,411,847 B2

410
\

k4

Access file 1o be processed

413

/

] Extract a filefo |
“Yes pProcess

|~ Archive ™
~_ file?

No

“Did file ™

change?,.

LYes

Generate change D |

and time stamp

420

/

i Generate hash of

~ binary file
No g Y 422
Perform diff
opearation
~ 424
¥ £
Store change B

in change repository

428

“Archive ™ “Mare files ™

L 4

. file? 7 to extract? Nes

‘More files

Yos N0 process?.

FIGURE 4

U.S. Patent

Aug. 9, 2016 Sheet 5 of 6 US 9,411,847 B2

~ 510

Display list of applications
being monitored

A 4 512
Receive a selection of f
one of the applications

. 4 ~ 514
Display performance | J

monitering GUI

¥
Receive a selection indicaling a point / 516

inn time near which application
perfarmance is {0 be evaluated

X
Query central monitoring server | /7 318

for change events nearthe |/
indicated point in fime

A 4

¥

I 520
Display change events

522
}

No 7 Receive an <
~undo selection?

Yes

instruct monitored machine that is]” 524

hosting the application with the change
to be undone to undo the change

FIGURE §

U.S. Patent

Aug. 9, 2016 Sheet 6 of 6

US 9,411,847 B2

Travel
601 610

13:39:00 13:40:00 13:41:00 13:42:00 13:43:00

FIGURE 6A
13
y,
{
Object Description Time Type
Travel delete: foptivmware/tes.. 13:41:45 configuration
Travel modify: foptivmwarefics... 13:41:15 configuration
Travel added 5 secpads sieep...13:40:08 code change
820

FIGURE 6B

US 9,411,847 B2

1
TRACKING CHANGES THAT AFFECT
PERFORMANCE OF DEPLOYED
APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/491,305, entitled “Tracking Changes That
Aftect Performance of Deployed Applications,” filed Jun. 7,
2012, which is related to U.S. patent application Ser. No.
13/491,329, entitled “Correlating Performance Degradation
of Applications to Specific Changes Made to Applications,”
filed Jun. 7, 2012.

BACKGROUND

With the transition to virtualized infrastructure in recent
years, outages due to configuration changes to applications
have been on the rise. Some of the more common configura-
tion changes include code push, and changes to the clustering
configuration, number of threads allocated to applications,
and datastore configuration. Although many of these changes
are tested prior to rolling them out in the production environ-
ment, outages and significant performance degradations are
not discovered, indeed cannot be discovered, if they result
from scale issues, e.g., when the changes are rolled out in a
cloud environment having virtual machines that number in
the millions.

SUMMARY

One or more embodiments disclosed herein provide an
application monitoring infrastructure that enables application
configuration changes on multiple machines across multiple
OS types to be tracked, and correlated to performance degra-
dation and outages.

A method for tracking configuration changes of applica-
tions, according to an embodiment, includes the steps of
identifying data containers that are to be monitored for
changes, detecting a change to a monitored data container,
and storing data representative of a changed version of the
monitored data container responsive to detecting that the
monitored container was changed, wherein the data contain-
ers that are to be monitored for changes are identified from
templates, and a unique template is provisioned for each of
the applications.

A method for tracking configuration changes of applica-
tions, according to another embodiment, includes the steps of
identifying data containers that are to be monitored for
changes, receiving notifications of file events, transforming
multiple file events into a normalized file event, detecting a
change to a monitored data container based on the normalized
file event, and storing data representative of a changed version
of the monitored data container responsive to detecting that
the monitored container was changed.

Further embodiments of the present invention include,
without limitation, a non-transitory computer-readable stor-
age medium that includes instructions that enable a computer
system to implement one or more aspects of the above meth-
ods as well as a computer system configured to implement
one or more aspects of the above methods.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a computing environment
in which one or more embodiments may be practiced.

15

30

40

45

65

2

FIG. 2 is a conceptual diagram that illustrates various soft-
ware components of' a monitored machine that enable track-
ing of changes made to applications running in the monitored
machine.

FIG. 3 is a flow diagram of a method for generating change
events when a change to a folder or a file is detected.

FIG. 4 is a flow diagram of a method for versioning
changes made to files of monitored applications.

FIG. 5 is a flow diagram of a method for generating, and
processing inputs made to, an application performance moni-
toring user interface.

FIG. 6A illustrates a sample application performance
monitoring user interface.

FIG. 6B illustrates a sample application change tracking
user interface.

DETAILED DESCRIPTION

FIG. 1 is a simplified diagram of a computing environment
in which one or more embodiments may be practiced. In one
embodiment, the computing environment is a cloud comput-
ing environment that includes a plurality of physical comput-
ing devices (“physical machines”) networked together and
managed by an entity such as a cloud controller. The diagram
of FIG. 1 illustrates components of the computing environ-
ment that monitor the performance of various applications
and physical machines deployed therein. The monitoring
components include a health monitoring server 10 and a
central monitoring server 20, one or both of which may be
implemented in a physical machine, in a virtual machine, or
as software as aservice. Central monitoring server 20 collects
performance and change data from a plurality of monitored
machines 100, and health monitoring server 10 accesses such
data and displays them to a system administrator, e.g.,
through a graphical user interface (GUI). An example of
health monitoring server 10 is VMware vFabric Appinsight,
which is commercially available from VMware, Inc. of Palo
Alto, Calif. An example of central monitoring server 20 is
VMware vFabric Hyperic, which is also commercially avail-
able from VMware, Inc. It should be recognized that, in
alternative embodiments, the functions of health monitoring
server 10 and central monitoring server 20 described herein
may be carried out by a single server.

Each of health monitoring server 10, central monitoring
server 20, and monitored machines 100 includes hardware
components of a conventional computing device, such as
processor and system memory, and system level software.
Health monitoring server 10 further includes software com-
ponents running on top of its system level software, one of
which is shown in FIG. 1 as health monitor 11. Health moni-
tor 11 communicates with central monitoring server 20 over
a network to retrieve application performance data and
change data from central monitoring server 20 through an
application programming interface (API) 23. Health monitor
11 also processes the retrieved performance data and change
data to generate various GUIs that are presented to the system
administrator through a display 13.

Central monitoring server 20 further includes software
components running on top of its system software, which are
shown in FIG. 1 as central monitor 21 and API 23. Central
monitor 21 communicates with monitored machines 100 to
collect application performance and change data from them,
and store them in an event store 30. Central monitor 21 makes
such collected data available to health monitor 11 through
API 23.

Each of monitored machines 100 includes one or more
applications 110 running on top of its system software. It also

US 9,411,847 B2

3

includes a performance monitoring agent 50 that monitors the
performance and/or behavior of applications 110, such as
central processing unit (CPU) usage, physical memory usage,
and latency, and a change monitoring agent 60 that monitors
changes to various files and folders designated by the system
administrator as being monitoring targets. Some examples of
applications that can be tracked include web server applica-
tions such as Tomcat, JBoss, Websphere, Weblogic, and IIS,
and database applications such as MySQL, PostgreSQL,
Oracle, and MSSQL. Monitored machines 100 may be physi-
cal or virtual machines. Physical machines include any com-
puting device, such as server-grade computing platforms,
desktop and laptop computing devices, and mobile comput-
ing devices, such as tablet computers and smart phones.

FIG. 2 is a conceptual diagram that illustrates various soft-
ware components of' a monitored machine that enable track-
ing of changes made to applications 110 running in the moni-
tored machine. The presence of applications 110 running in
monitored machine 100 is discovered through application
monitor 51, which keeps track of installed applications.
Applications 110 running in monitored machine 100 may be
designated for performance monitoring and change tracking
according to embodiments described herein, and each appli-
cation that is designated for such monitoring and change
tracking has a monitoring template 70 associated therewith.
Monitoring templates 70 are stored and maintained in a per-
sistent storage device of monitored machine 100, and for
efficient access, may be cached in system memory of moni-
tored machine 100. A sample monitoring template is illus-
trated in TABLE 1.

TABLE 1

<plugin package="org.hyperic.hq.plugin.tomcat” name="tomcat”
version="@project.version@”>
<metrics name="Some__metrics’>
</metrics>
<server name="Apache Tomcat” version="5.5"
platforms="Unix,Win32">
<property name="VERSION_ FILE” value="“server/lib/catalina-
storeconfig.jar’/>
<plugin type=“config_ track”
class="“org.hyperic.hq.product.FileChangeTrackPlugin”>
<monitored>
<folder path="conf” recursive="true”
filter="* properties|.* xmll.* .policy”/>
<folder path="bin” recursive="false” filter=".* batl.*.xml|.*.sh”/>
<folder path="1ib” recursive="false” filter=".* jar”/>
<folder path="webapps” recursive="true”
filter="*\jar[.*\.dlll.*\.class|.®\ jspl.*\.php . *\.plI.-
\jsl.F\pyl. F.pycl.F\.cgi”/>
<folder path="data” recursive="false” filter=".*\.conf”/>
<!-- system variable PGDATA -->
<folder path="%PGDATA%” recursive="false” filter=".*\.conf”/>
</monitored>
</plugin>
<fserver>
</plugin>

Monitoring template 70 for an application identifies the
application being monitored, and paths of folders and files to
be monitored, some recursively, for that application. In the
example given in TABLE 1, the application being monitored
is “Apache Tomcat” and the folders and files that are to be
monitored recursively have a recursive flag set to be true.
Within a monitored folder, a regular expression filter is used
to determine which files are monitored. In addition, monitor-
ing template 70 may designate folders and files to be moni-
tored using environmental or system variables so that files
that affect the performance of the application and whose
location on the file system is determined by environment/

10

15

20

25

30

35

40

45

50

55

60

65

4

system variables may be monitored and tracked according to
embodiments described herein. Using monitoring template
70, the folders and files for any application being monitored
may be custom defined. By using monitoring template 70, the
number of folders and files to be monitored can be reduced to
a manageable (practical) number.

Change monitoring agent 60 monitors changes to various
files and folders of particular applications 110 being moni-
tored as specified in monitoring templates 70. As shown,
change monitoring agent 60 includes two modules. The first
is an event processor 62 that receives notifications from the
system software of monitored machine 100 that a certain
folder or file has been changed. The particular components of
system software that are providing the notifications are a file
system (FS) monitor 63, a database (DB) monitor 64, and for
Microsoft Windows® systems, a registry monitor 65. In one
embodiment, a Java® library known as “jpathwatch” is used
to monitor file system changes such as file creation and dele-
tion, file modification, file renaming, and changes in subfold-
ers. As will be further described below in conjunction with
FIG. 3, event processor 62 evaluates the changes detected by
FS monitor 63, DB monitor 64, and registry monitor 65 and
produces change events for further processing by change
tracker 61, which is the second module within change moni-
toring agent 60 shown in FIG. 2. Change tracker 61 receives
change events from event processor 62 and processes the
versioning of the changes to files using a versioning tool to
store any changes to the files in change repository 80, which
may be provisioned in system memory or local storage. Inone
embodiment, the versioning tool known as Git is used.

FIG. 3 is a flow diagram of a method for generating change
events when a change to a folder or file is detected. In the
embodiment described herein, this method is carried out by
change monitoring agent 60, in particular, event processor 62.

The method begins at step 310 when FS monitor 63 detects
one or more change events on the same file or folder during a
configurable time period, Tmin. In some situations, multiple
change events relating to effectively the same change are
triggered, and this time period is set so that such change
events can be captured and analyzed collectively. In one
embodiment, this time period is set as 2 milliseconds. At step
312, event processor 62 determines whether or not the file or
folder should be monitored, based on the installed applica-
tions that it discovered through application monitor 51 and
the monitoring templates 70. For each monitored folder, event
processor 62 registers with the underlying system software
for change event notifications. If the file or folder for which
the change event is detected at step 310 is not specified in a
monitoring template’s filter of an installed application, the
method ends. On the other hand, if the file or folder for which
the change event is detected at step 310 is specified in a
monitoring template of an installed application, step 314 is
executed where event processor 62 determines the applica-
tion ID (App ID) of the installed application for which the file
or folder is being monitored. Then, at step 316, event proces-
sor 62 determines whether a single file event is being pro-
cessed. If a single event is being processed, step 318 is
executed, where event processor 62 issues a change event,
including the App ID and the path to the changed file to
change tracker 61. If, on the other hand, a folder event or
multiple file events are being processed, step 320 is executed.

At step 320, event processor 62 determines whether it can
transform a folder event or multiple file events into a single,
normalized event, without relying on any OS-specific knowl-
edge. For example, if two or more modify events are triggered
for the same file within the time period, Tmin, event processor
62 may interpret all such modify events as a single modify

US 9,411,847 B2

5

event. In such situations, event processor 62, at step 322,
transforms the multiple events into a single, normalized
event. Thereafter, step 330 is executed, where event processor
62 issues a change event, including the App ID and the path(s)
to any changed files to change tracker 61. The method ends
after step 330 as there are no more change events to process.

If, at step 320, event processor 62 determines that it cannot
transform a folder event or multiple events into a single,
normalized event, without relying on any OS-specific knowl-
edge, steps 324 and 326 are executed. At step 324, event
processor 62 determines the OS-type and, at step 326, event
processor 62 determines whether it can transform the folder
event or multiple events into a single, normalized event, with
reliance on OS-specific knowledge. For example, in Win-
dows® OS, a file creation triggers five separate events—
create, delete, recreate, modify, and modify. Event processor
62, at step 328, transforms all such events into a single,
normalized file creation event and, at step 330, issues a
change event, including the App ID and the path to the newly
created file, to change tracker 61. Another example is a folder
copy event in Windows® OS, which triggers a folder create
event and multiple file events for each file in the folder. Event
processor 62, at step 328, transforms the folder copy event
and the subsequent file events into a single, normalized folder
event and, at step 330, issues a change event, including the
App ID and the paths to the files in the folder, to change
tracker 61. With Linux® OS, where a folder copy event
triggers only a single folder event, event processor 62, at step
328, transforms the folder copy event into a single, normal-
ized folder event and, at step 330, issues a change event,
including the App ID and the paths to the files in the folder, to
change tracker 61. In all three examples given above, the
method ends after step 330 as there are no more change events
to process.

In some situations where normalization may not be desired
or cannot be implemented, each change event is processed as
a separate change event at step 330. The method ends when it
is determined at step 332 that all change events have been
processed.

FIG. 4 is a flow diagram of a method for versioning
changes made to files of monitored applications. In the
embodiment illustrated herein, change tracker 61 is perform-
ing the steps of this method and change tracker 61 is employ-
ing a versioning tool known as Git for steps 414 through 424
of this method.

When change tracker 61 pulls a change event with a file
path and a change type (create, delete or modify) from a queue
of change events maintained by event processor 62, change
tracker 61 accesses the files at the indicated file path. This
method begins at step 410 with the accessing of one such file.
In some situations, the accessed file may be an archive file
such as a JAR fileor a WAR file, and change tracker 61 checks
for this at step 412. If the accessed file is an archive file,
change tracker extracts a file to process from the archive file
at step 413, and step 414 is executed thereafter. If not, the
method proceeds directly to step 414 and the accessed file is
processed.

At step 414, the processed file is checked for changes. If
there are no changes, the file is not versioned and the method
jumps to step 426. [fthere are changes, a change ID and a time
stamp for the changes is generated at step 416. If the changed
file is binary file, as determined at step 418, a hash of the
binary fileis generated (step 420) and stored in change reposi-
tory 80 along with the change ID and the time stamp (step
424). I, on the other hand, the changed file is a text file, a diff
operation is performed on the text file against the prior ver-
sion of the text file to generate a diff file (step 422) and the diff

40

45

50

6

file is stored in change repository 80 along with the change ID
and the time stamp (step 424).

If the file being processed is an archive file, as determined
at step 426, step 428 is executed to see if there is any more file
to be extracted from the archive file. If there is any more file
to be extracted from the archive file, the method returns to step
413 where another file is extracted. If there are no more files
to be extracted from the archive file or the file being processed
is not an archive file, change tracker 61 executes step 430 to
see if there are any more files to process. The method ends if
there are no more files to process, and returns to step 410 if
there is at least one more file to process.

As previously described, central monitor 21 of central
monitoring server 20 communicates with monitored
machines 100 to collect performance and change data from
them, and store them in event store 30. The frequency of the
collection is configurable. The performance data that are col-
lected include App ID and time history of the CPU usage,
memory usage, and latency. The change data that are col-
lected and stored in event store 30 include the change 1D, App
1D, time stamp, path of changed file, and the diff file.

Health monitor 11 of health monitoring server 10 accesses
the performance data and the change data through API 23 to
carry out a method for generating, and processing inputs
made to, an application performance monitoring UI. The
steps of this method are illustrated in FIG. 5.

At step 510, health monitor 11 displays a list of applica-
tions being monitored on a UI. A system administrator view-
ing the Ul may select an application of interest, e.g., travel
web server. Upon receiving this selection at step 512, health
monitor displays a performance monitoring Ul for the
selected application at step 514. A sample performance moni-
toring Ul is illustrated in FIG. 6 A, and shows a time history of
CPU usage 601 and latency 602. A user-selectable warning
symbol 610 is displayed at a particular point in time of the
illustrated time histories as an indicator of when performance
degradation of the selected application has occurred. When
the system administrator makes an input selection (e.g., a
mouse click or a tap on a touch screen) on warning symbol
610 and health monitor 11 receives this selection at step 516,
health monitor 11 queries central monitoring server 20 for
change events that are close in time to the performance deg-
radation. In response to the query, central monitoring server
20 searches change data of the selected application main-
tained in event store 30 and returns the requested data to
health monitor 11. At step 520, health monitor 11 displays the
change events on another UL, one example of which is illus-
trated in FIG. 6B. Upon viewing the change events, the sys-
tem administrator may implement fixes or roll back the
changes that caused the performance degradation by making
an input selection on top of one of the change events (step
522). In the sample illustration of FIG. 6B, the code change
implemented at 13:40:06 can be rolled back by manipulating
cursor 620 to that location and making an input selection on
that highlighted line. In response to the input selection, health
monitor 11 issues an undo command identifying the change
event by its change ID through API 23 (step 524). Central
monitoring server 20 passes this undo command to the appro-
priate monitored machine and, in turn, the monitored
machine executes the undo command using its versioning
tool.

If the monitored machine is a virtual machine, as an alter-
native to the pinpoint rolling back, the entire virtual machine
may be rolled back to the most recent snapshot that was taken
prior to the point in time performance degradation was
observed.

US 9,411,847 B2

7

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system—com-
puter readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams in a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Virtualization systems in accordance with the various
embodiments may be implemented as hosted embodiments,
non-hosted embodiments or as embodiments that tend to blur
distinctions between the two, are all envisioned. Furthermore,
various virtualization operations may be wholly or partially
implemented in hardware. For example, a hardware imple-
mentation may employ a look-up table for modification of
storage access requests to secure non-disk data.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include components
of a host, console, or guest operating system that performs

10

15

20

25

30

35

40

45

50

55

60

65

8

virtualization functions. Plural instances may be provided for
components, operations or structures described herein as a
single instance. Finally, boundaries between various compo-
nents, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of the inven-
tion(s). In general, structures and functionality presented as
separate components in exemplary configurations may be
implemented as a combined structure or component. Simi-
larly, structures and functionality presented as a single com-
ponent may be implemented as separate components. These
and other variations, modifications, additions, and improve-
ments may fall within the scope of the appended claim(s).

We claim:
1. A method for tracking changes to data containers includ-
ing one or more first data containers corresponding to a first
application and one or more second data containers corre-
sponding to a second application, said method comprising:
identifying one or more of the first data containers to be
monitored for configuration changes of the first applica-
tion based on a first expression that is stored in associa-
tion with the first application and identifies the one or
more of the first data containers;
identifying one or more of the second data containers to be
monitored for configuration changes of the second
application based on a second expression that is stored in
association with the second application and identifies
the one or more of the second data containers;

detecting one or more changes to a monitored data con-
tainer; and

storing data representative of a changed version of the

monitored data container responsive to detecting the one
or more changes to the monitored data container.

2. The method of claim 1, wherein the first and second data
containers include at least one of files and folders, and
wherein the first and second expressions specify paths of the
at least one of files and folders that are to be monitored.

3. The method of claim 2, wherein the first and second
expressions specify environmental variables, the values of
which define paths of the at least one of files and folders that
are to be monitored.

4. The method of claim 2, wherein detecting the one or
more changes to the monitored data container includes
detecting multiple file events, and wherein the method further
comprises:

transforming the multiple file events into a single, normal-

ized file event.

5. The method of claim 1, further comprising:

performing a diff operation on the changed version of the

monitored data container against a previous version of
the monitored data container and storing results of the
diff operation as the data representative of the changed
version of the text file.

6. The method of claim 1, wherein the one or more changes
to the monitored data container are detected within a prede-
termined time period.

7. The method of claim 1, wherein the first and second
applications are deployed on a virtualization system.

8. The method of claim 1, further comprising:

collecting and storing performance data associated with

the first and second applications.

9. The method of claim 8, wherein the collected and stored
performance data include at least one of CPU usage, memory
usage, and latency.

US 9,411,847 B2

9

10. The method of claim 8, further comprising:

displaying an indication of the stored performance data

associated with the first or the second application along
with an indication of stored data representative of
changed versions of the first or the second application.
11. A non-transitory computer-readable storage medium
storing instructions, which when executed by a computer
system, perform operations for tracking changes to data con-
tainers including one or more first data containers corre-
sponding to a first application and one or more second data
containers corresponding to a second application, the opera-
tions comprising:
identifying one or more of the first data containers to be
monitored for configuration changes of the first applica-
tion based on a first expression that is stored in associa-
tion with the first application and identifies the one or
more of the first data containers;
identifying one or more of the second data containers to be
monitored for configuration changes of the second
application based on a second expression that is stored in
association with the second application and identifies
the one or more of the second data containers;

detecting one or more changes to a monitored data con-
tainer; and

storing data representative of a changed version of the

monitored data container responsive to detecting the one
or more changes to the monitored data container.

12. The non-transitory computer-readable storage medium
of claim 11, wherein the first and second data containers
include at least one of files and folders, and wherein the first
and second expressions specify paths of the at least one of
files and folders that are to be monitored.

13. The non-transitory computer-readable storage medium
of'claim 12, wherein the first and second expressions specify
environmental variables, the values of which define paths of
the at least one of files and folders that are to be monitored.

14. The non-transitory computer-readable storage medium
of'claim 12, wherein detecting the one or more changes to the
monitored data container includes detecting multiple file
events, and wherein the operations further comprise:

transforming the multiple file events into a single, normal-

ized file event.

15. The non-transitory computer-readable storage medium
of claim 11, the operations further comprising:

performing a diff operation on the changed version of the

monitored data container against a previous version of

25

30

40

45

10

the monitored data container and storing results of the
diff operation as the data representative of the changed
version of the text file.

16. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more changes to the moni-
tored data container are detected within a predetermined time
period.

17. The non-transitory computer-readable storage medium
of claim 11, wherein the first and second applications are
deployed on a virtualization system.

18. The non-transitory computer-readable storage medium
of claim 11, the operations further comprising:

collecting and storing performance data associated with

the first and second applications.

19. The non-transitory computer-readable storage medium
of claim 18, the operations further comprising:

displaying an indication of the stored performance data

associated with the first or the second application along
with an indication of stored data representative of
changed versions of the first or the second application.

20. A system, comprising:

a processor; and

a memory, wherein the memory includes an application

program configured to perform operations for tracking

changes to data containers including one or more first

data containers corresponding to a first application and

one or more second data containers corresponding to a

second application, the operations comprising:

identifying one or more of the first data containers to be
monitored for configuration changes of the first appli-
cation based on a first expression that is stored in
association with the first application and identifies the
one or more of the first data containers,

identifying one or more of the second data containers to
be monitored for configuration changes of the second
application based on a second expression that is
stored in association with the second application and
identifies the one or more of the second data contain-
ers,

detecting one or more changes to a monitored data con-
tainer, and

storing data representative of a changed version of the
monitored data container responsive to detecting the
one or more changes to the monitored data container.

#* #* #* #* #*

